
Convergence Speed of Dynamic Consensus with Delay Compensation

Rosario Aragues1,∗, Antonio González2, Gonzalo López–Nicolás1, Carlos Sagues1

Abstract

The dynamic consensus problem, in which a robot network cooperatively tracks a common value, typically the average, of a
time-varying signal, has important applications in distributed formation control, convex optimization, or target tracking problems,
among others. A known drawback in networked systems is that the exchanged information is usually delayed due to the time elapsed
during the data transmission process. Classical dynamic average consensus methods are known to lead to poor performance or even
instability if delays are sufficiently large. In this paper, we propose a novel dynamic consensus method that counteracts the negative
effects of delays. Our solution relies on the use of delay compensation techniques. The interest is that our dynamic consensus
method with delay compensation converges under mild conditions on graph connectivity and bounded reference signals, no matter
how large delays are, as long as delays are fixed and known. We also provide a formal characterization of the convergence speed of
our method. Additionally, our results apply to fixed directed strongly connected and undirected topologies.

Keywords: Sensor networks, Dynamic average consensus, Time–delays, Distributed and cooperative systems, Distributed control
of multi-agent systems

1. Introduction

The problem of distributed average consensus [1–4] is an
interesting topic of research with a variety of applications, in-
cluding formation control [5], convex optimization [6], eco-
nomic dispatch [7] or target tracking [8], among others. In dy-
namic average consensus scenarios, a team of robots measures
a set of reference signals (possibly time-varying), and can ex-
change data with their neighbors (nearby robots). In this case,
each robot updates its state based on the exchanged informa-
tion with the objective of cooperatively tracking the averaged
consensus of the reference signals. The problem of static con-
sensus is similar, but considering that the reference signals are
time-invariant.

Time delays may cause the oscillation, divergence and even
instability in the design of different types of neural network sys-
tems [9], [10], [11], [12].

Real scenarios have several difficulties that may degrade the
performance, or risk stability. For instance, in Iterative Learn-
ing Control (ILC) scenarios, uncertainties may arise in several
ways, including models that vary with time, outputs corrupted
by disturbances [13], or nonuniform trial lengths [14]. Consider
for instance a mobile robot whose weight changes in different
experiments, or whose material properties change due to the ef-
fects of temperature changes or aging. It is of high importance

∗Corresponding author
1R. Aragues (raragues@unizar.es), G. López-Nicolás

(gonlopez@unizar.es), and C. Sagues (csagues@unizar.es)

are with the Universidad de Zaragoza and Instituto

Universitario de Investigación en Ingenierı́a de Aragón

I3A, Spain.
2A. González (angonsor@upv.es)is with Instituto de

Automática e Informática Industrial (AI2), Universitat

Politècnica de València, Valencia, Spain.

to count on methods that are robust and that can cope with or
even counterattack the negative effects of these uncertainties,
noises, or time delays [15] , [13], [14].

A multi-robot team constitutes a networked system, in which
the agents interact via communications. A known drawback in
networked systems is that the exchanged information is usu-
ally delayed due to the time elapsed during the data transmis-
sion process [16–19]. These delays may jeopardize the closed–
loop system performance, and may even lead to instability if
they are large enough. This motivated the convergence analysis
of consensus algorithms in the presence of time delays. It is
well known that there exists a maximum allowable delay under
which the system remains stable for consensus problems, such
as group consensus [20], static consensus [21–29] and dynamic
consensus [30].

In the particular case that delays only affect the received
measurements coming from neighbor agents or robots, then sta-
bilization is guaranteed irrespective of the size of delays [21,
31–35], although these delays can lead to slower convergence
or poor performance [31].

Instead, it would be desirable to count on strategies aimed
at reducing the negative effects of delays and ensuring conver-
gence under the same conditions on the topological structure as
the ones associated to the delay–free static or dynamic consen-
sus strategies. In this paper, we study a dynamic consensus
algorithm under delayed data. Opposite to [21, 31–35], de-
layed relative measurements between neighbors are here con-
sidered. This implies that there exist delays in the diagonal
term of the overall closed–loop system matrix (i.e., we are not
restricted to the case that delays only affect the off–diagonal
terms of the overall closed–loop system matrix). Thus, we need
to provide additional mechanisms to mitigate the negative ef-
fects of the delays. In this respect, some contributions proposed

Preprint submitted to Elsevier December 15, 2023

Citation: Rosario Aragues, Antonio González, Gonzalo López-Nicolás, and Carlos Sagüés.
Convergence speed of dynamic consensus with delay compensation.
Neurocomputing, 570:127130, 2024. 



to let each robot predict the current states of the neighbors, and
use this predicted data to carry out its updates [36]. Neverthe-
less, these approaches have the inconvenience of high mem-
ory consumption and computation complexity. Since one of the
strengths of using distributed strategies is their inherent scala-
bility, it would be desirable to decrease to the greatest extent
the required resources in terms of memory usage and compu-
tational cost. Other interesting method is to face communica-
tion delays by using predictor-feedback delay compensation ap-
proaches [37–39]. The underlying idea behind delay compensa-
tion is to use current and past information of the system process
to predict the future state with prediction horizon equivalent to
the delay value (but without explicitly keeping predictions of
the states of all neighbors, as in [36]). Thus, the state feedback
control can make use of the prediction of the state variable to
counteract the effect of delays in the closed-loop system. Delay
compensation requires prior knowledge of the system model in
order to find an equivalent delay-free representation, with the
advantage that control synthesis in the presence of time delays
can be simplified, that is to say, the controller parameters can
be designed by traditional methods without considering delays.
In distributed scenarios like the one considered here, is gener-
ally not possible to obtain an exact prediction of the system.
However, as discussed in this paper, a partial delay compen-
sation can be achieved by introducing extra parameters in our
predictor-feedback delay compensation strategy, preventing the
system from becoming unstable. Differently from conventional
predictor-feedback methods, each robot only uses its current
and past local inputs to obtain a prediction of the system state.
Since only local information is available to each agent, such
prediction cannot be exact, but can lead to some improvement
if the prediction is properly weighted.

In the context of distributed robot networks, few works [5,
40–42] resort to predictor-feedback methods for delay compen-
sation: In [40], they consider static consensus problems and
include parameters to weight the importance of terms involving
historical input data, giving also the limits on these parame-
ters to ensure convergence for arbitrarily large delays. In [41],
delays are compensated in a static consensus law of high or-
der systems by means of truncated predictor feedback. The ef-
fectiveness is proved for any arbitrarily large delay provided
that they are time-constant and known. In [43], the Artstein’s
reduction method is adapted to obtain a delay–free model in
static consensus scenarios for continuous time systems. The
work [42] proposes a predictor feedback scheme by consider-
ing agents with linear continuous–time dynamics models. The
consensus problem addressed there studies the convergence of
the local state variables of each agent to a common value, which
is not necessarily the average, but does not discuss the average
tracking control problem, as we propose here.

In our previous work [5], we successfully used the histori-
cal information of the control inputs to increase the robustness
of formation control methods under time–varying delays and
fixed graphs. The stability analysis was addressed by means
of LMI conditions obtained by Lyapunov method. Compared
to our previous work [5], here we consider dynamic consensus
scenarios. We carefully study the relation between the conver-

gence speed and eigenvalues of the underlying graph, and the
overall closed-loop system matrix in the presence of delays.

The solutions proposed in [5, 40–42] do not fully solve the
problem considered in this paper. First, these works do not deal
with prediction feedback and delay compensation applied to
the problem of dynamic average consensus, where the aim is
not only to achieve consensus, but also to ensure the consensus
value tracks the time–varying average of the references, as ex-
plained in the paper. As we discuss later in Section 6.3, dealing
with time–varying reference signals, presents challenges which
are inherent to the dynamic average problem. Second, in this
work we are interested in obtaining closed–form expressions
on the parameter configuration and on the convergence speed
(transient behavior). We also provide an insight on how delays
affect the properties of the overall closed–loop system matrix,
and their effects on both transient and steady state performance.
Indeed, not only mere stability but also dynamic performance
is relevant in practice. For instance, [30] and [31] focused on
analyzing the transient response in respectively static and dy-
namic consensus, but without considering any delay compen-
sation strategy.

The main contributions of this paper are:

• We propose a dynamic consensus method for discrete–
time systems with a predictor feedback strategy for delay
compensation. As far as we know, this approach has not
been previously applied to any dynamic consensus algo-
rithm.

• The proposed method can cope with a high variety of
graphs, including undirected graphs that may be sparsely
connected, as well as directed graphs that are strongly
connected.

• We ensure convergence for arbitrarily large time delays
expressed in time steps (d), provided that the equivalent
delay–free closed–loop system is stable.

• We provide analytic expressions that reveal the influence
of communication topology and delays on the speed of
convergence. These results rely on a thorough eigenvalue–
based analysis of the performance of the dynamic con-
sensus method.

• We propose parameter tuning rules aimed at improving
the speed of convergence. Remarkably, this adjustment
does not depend on the delay value.

• The method is scalable, and it has light requirements in
terms of communication, computational and memory costs.

This paper is organized as follows. Section 2 states the
problem and introduces the notation used in the paper. Sec-
tion 3 presents the proposed dynamic consensus algorithm with
delay compensation. Section 4 presents the proposed algorithm
under different alternative representations that are useful later
for convergence analysis. Section 5 studies the properties of
the method in terms of its convergence speed. In this section,
we state the main result of the paper, regarding the stability and

2



transient behavior of the proposed method. Section 6 presents
several simulations with different networks and delay values,
and Section 7 gives the conclusions of the paper.

2. Preliminaries and Problem Description

Let In be the n×n identity matrix, 0n1×n2 be a n1 ×n2 matrix
with all entries equal to 0, and 1n, 0n be column vectors with
all entries equal to 1 and 0 respectively. The dimensions are
omitted when they can straightforwardly be inferred.

There are n robots in an environment. At every step k ∈ Z
robot i has a state xi(k) ∈ R and it can modify its state according
to the control input ui(k), discussed later, and the update rule
xi(k) = xi(k − 1) + ui(k), for i = 1, ..., n. Robots exchange
data according to a directed communication graph (digraph)
G = (V,E), where V = {1, . . . , n} are the robots, and there is
an edge (i, j) ∈ E if robot i can receive data from robot j, i.e.,
if robot j is one of the neighbors or robot i. We assume that the
directed graph G is strongly connected: there exists a directed
path between every pair of robots (all robots can receive data
from all the other robots in a multi-hop way). Let matricesA ∈
{0, 1}n×n andL ∈ Rn×n be respectively the adjacency matrix and
the Laplacian matrix associated to G,

A = [ai j] =
{

1, if (i, j) ∈ E, i , j,
0, otherwise,

L = diag(A 1) −A, (1)

and we let Nmax = maxi∈{1,...,n}{
∑

j,i be the maximum degree.
Each robot i, for i ∈ {1, . . . , n}, measures a reference signal

ri(k), that varies along time k. The dynamic average consensus
problem consists of designing control inputs ui(k) that only de-
pend on local data (current and previous robot states xi(k′) and
references ri(k′), k′ ≤ k), and on information from the neigh-
bors (agents j with (i, j) ∈ E, or equivalently, ai j = 1) so that
every robot tracks the weighted average (for strongly connected
digraphs) of the references,

rwavg(k) =
wT
L1

1T wL1

r(k), (2)

where r(k) = [r1(k), . . . , rn(k)]T , and wL1 is the left eigenvec-
tor of the Laplacian matrix (1) associated with the eigenvalue
0, i.e., wT

L1
L = 0T . In undirected graphs and weight-balanced

digraphs, the adjacency matrix in (1) has equal row and col-
umn sums [25, Definition 1], and they have the property that
1T is a left eigenvector of the Laplacian L associated with the
eigenvalue 0, i.e., 1TL = 0T . Thus, (2) is the exact average,

ravg(k) =
1
n

n∑
j=1

r j(k). (3)

In strongly connected digraphs, wT
L1

is not necessarily equal to
1T , and this vector introduces a weighting factor in the consen-
sus value in (2) [25].

An example of dynamic average consensus algorithm fol-
lows [1, 2, 30]:

xi(k) = xi(k − 1) + ui(k), for k ≥ 1

ui(k) = ri(k) − ri(k − 1) − βδ
n∑

j=1

ai j(xi(k − 1) − x j(k − 1)),

xi(0) = ri(0), (4)

where β, δ are controller parameters that must be tuned. The
static average consensus [25] is a particular case of (4), where
the reference signals remain constant along the iterations (ri(k) ≡
ri for all k) and robot states converge to the average of the initial
states: (1/n)

∑n
j=1 x j(0). Both in static and dynamic consensus

methods (4), the control input ui(k) is computed using informa-
tion locally available to agent i and information received from
the neighbors (note from (4) that ai j in (1) equals 0 for non–
neighbor agents, i.e., ai j = 1 iff (i, j) ∈ E). In dynamic consen-
sus methods, each agent i computes the current state xi(k) by
means of (4) in two steps: first, the current value of the time-
varying reference signal ri(k) is measured and second, the con-
trol input ui(k) is computed using the measured value of ri(k) to-
gether with the information received from the neighbors. Note
that agent i also needs to recall the previous state and reference
signal at step k − 1 (xi(k − 1), ri(k − 1)).

In the absence of delays [1, 2], parameters β and δ must
satisfy the following conditions in order to ascertain the con-
vergence of the consensus law (4):

δ ∈

(
0,

1
βNmax

)
, β > 0. (5)

Then, for connected undirected graphs, and references that ex-
perience bounded variations, the states of every agent xi(k), for
i = 1, . . . , n converge asymptotically to a neighborhood of the
average of the reference signals, satisfying [1, 2]:

lim sup
k→∞

∣∣∣∣∣∣∣∣xi(k) −
1
n

n∑
j=1

r j(k)

∣∣∣∣∣∣∣∣ ≤ α

βδλL2

,

α = max
k

(∥∥∥(I − 11T /n)(r(k) − r(k − 1))
∥∥∥

2

)
, (6)

λL2 is the second smallest eigenvalue of the Laplacian, and
r(k) = [r1(k), . . . , rn(k)]T as in (2). Similar results can be found
in [1, 2, 30] for strongly connected weight-balanced directed
graphs (where robots track the average), or for strongly con-
nected digraphs (where robots track a weighted average [25]).

2.1. Consensus in Presence of Delays

We consider a scenario where the reference ri(k) is immedi-
ately perceived by robot i, but the received data from neighbor
agents are affected by communication delays.

Assumption 1 (Delays). For our analysis, we consider fixed
and known delays expressed in time steps d which are common
to all communication links between agents, i.e., agents receive
the data sent by their neighbors d steps later.

3



Assumption 2 (Communication graph). We assume that the
communication graph G is directed, fixed (time-constant) and
strongly connected. Note that this includes undirected con-
nected graphs as a special case.

Assumption 3 (Bounded reference variations). We assume
that the reference signals r(k) experience bounded variations
along time, i.e., that there exists α+∞ finite such that it bounds
the variations of references along different steps.

Note that Assumption 1 appears often in consensus prob-
lems affected by time-delays [16–19, 43]. Assumption 3 is also
similar to the ones that appear in classical dynamic consensus
methods as in (6). The particular expression for α+∞ in our case
will be clearer when it is used later in Section 5 (Proposition 3,
Theorem 1 (64)), once the algorithm has been presented. In
any case, what is important in this Assumption is just to make
sure that there exist some value that bounds the variations of
the reference signals. Assumption 2 imposes conditions that are
mild on the connectivity of the graph. It includes a wide variety
of connectivity graphs, including undirected connected graphs
that may be sparse. Besides, it includes digraphs strongly con-
nected.

In the presence of delays, the immediate application of the
previous control laws would lead to:

ui(k) = ri(k) − ri(k − 1)

− βδ

n∑
j=1

ai j

(
xi(k − 1 − d) − x j(k − 1 − d)

)
, (7)

for the dynamic consensus case in (4). Recall that ri(k) is the
current measurement of the reference signal, obtained when
agent i is going to compute the current state xi(k), whereas
ri(k − 1) is the previous reference signal, measured when the
previous state xi(k − 1) was computed. It is well known that the
static consensus method under delays d as in (7) (with ri(k) =
ri(k−1)) converges only if the delays are sufficiently small [21–
29]. For instance, in case of discrete–time systems with undi-
rected graphs and βδ = 1, [24] gives the following maximum
allowable delay bound for d in (7):

d <
1
2

(
π

2 arcsin(Nmax)
− 1

)
, (8)

where Nmax is the maximum degree of the graph. On the other
hand, if the delay d in (7), instead of affecting the relative data(
xi(k − d) − x j(k − d)

)
, only affects the global information x j(k−

d) received from neighbors, i.e., if the control input depends
on

(
xi(k) − x j(k − d)

)
in (7), then static consensus methods can

cope with arbitrarily large delays [21, 31–35].
More recently, an analytic expression for the maximum al-

lowable input delay for stability in dynamic consensus (7) was
provided in [30, Lemma III.4] for undirected graphs:

d < min
i∈{2,...,n}

1
2

 π

2 arcsin( βδλLi
2 )
− 1

 , (9)

where λLi for i ∈ {2, . . . , n} are the nonzero eigenvalues of the
Laplacian L. Similar expressions appear in [30] for strongly
connected weight-balanced digraphs. The delay affects as well
to the tracking error [30, Theorem III.2] in (6), that now de-
pends not only on α, β, δ, but also on additional parameters that
can be obtained using Linear Matrix Inequalities on the delayed
system. The reader is referred to [30] for a full explanation.

Problem formulation 1. Our goal is to design the control in-
puts ui(k) for the dynamic consensus method (4), under delays
in the communications (Assumption 1) that affect the relative
states of the agents, (xi(k − 1 − d) − x j(k − 1 − d)), so that the
convergence is ensured for all possible values of the delay d
under the same conditions imposed by the underlying commu-
nication graph G. We consider strongly connected digraphs,
which include undirected graphs as a particular case.

Note that this could be done in a straightforward way if
we extended to the dynamic case the static consensus ideas
[21, 31–35] of imposing that the local agent’s state is not sub-
ject to time delays (i.e., if the relative measurements in (7) are(
xi(k − 1) − x j(k − 1 − d)

)
). Here, however, we let the relative

information
(
xi(k − 1 − d) − x j(k − 1 − d)

)
to be delayed. In or-

der to counteract the negative effects of delays in the closed-
loop performance of the dynamic consensus methods, we pro-
pose to use a scheme based on delay compensation by introduc-
ing past information [5, 39, 40].

The historical information of the control inputs was succes-
fully used in [40] for the static consensus case. In our previous
work [5], we used this historical data as well to improve the
closed-loop dynamic performance in the presence of delays in
formation control synthesis. However, as far as we know, these
ideas have not been previously applied to the dynamic consen-
sus problem. Moreover, in this paper we address a novel study
of the transient behavior and we provide an accurate character-
ization of the relation between the eigenvalues of the Laplacian
matrix of the underlying topology, and the convergence speed
of the delayed system. In addition, although we are interested
in undirected graphs (tracking of the average), in order to make
the proposal more general, we provide results for strongly con-
nected digraphs (tracking of a weighted average), which include
undirected graphs as a particular case.

2.2. Examples of Application
Figure 1 shows two examples of applications of the prob-

lem addressed in which our proposed method would be of in-
terest. The image in the top, shows a scenario with a wireless
sensor network deployed on an area for monitoring a phenom-
ena of interest (illustrated with background colors). Circular
nodes are equipped with sensors to measure the reference sig-
nals. Squares represent relay nodes [44, 45], that do not carry
sensors but are just in charge of keeping a multi-hop commu-
nication between sensor nodes. Nodes periodically wake up
and perform one round of operations (take one measurement /
transmit a 1-hop message) and sleep again, to save batteries and
increase the lifetime of the sensor network. Here, d represents
the number of hops between the sensing nodes. There are d

4



relay nodes between each pair of neighboring sensor nodes, by
construction.

In Figure 1, the images in the bottom represent another sce-
nario in which a node i takes a relative measurement of node
j. The required time for processing the relative measurement is
dT , whereas it is desired to sample the reference signals with
period T . Thus, each node is equipped with several processors
working in parallel, for managing the relative measurement to
each neighbor. For the measurement between i and j, node i
has d processors. However, the measurement is available after
dT time, introducing thus a delay of d iterations.

Note that for both scenarios, it would possible to consider
larger periods for every iteration, i.e., time periods dT instead
of T , and using classical dynamic consensus strategies. How-
ever, as we show later in the simulations (Section 6.3 and Fig-
ure 6), this would imply sampling the reference signals with
lower rate, giving rise to worse results for the dynamic consen-
sus case. This problem, that does not appear in static scenarios,
is challenging for the dynamic consensus case.

Figure 1: Examples of application to illustrate the interest of the proposed sce-
nario.

3. Dynamic Average Consensus with Delay Compensation

This section presents the proposed dynamic average con-
sensus with delay compensation method. Every agent, for

i ∈ {1, . . . , n}, runs:

xi(k) = xi(k − 1) + ui(k), for k ≥ 1,
ui(k) = ri(k) − (1 − γK) ri(k − 1) − γKri(k − 1 − d)

− K
n∑

j=1

ai j

(
xi(k − 1 − d) − x j(k − 1 − d)

)
− γK

d∑
f=1

ui(k − f ),

xi(k′) = ri(k′) for k′ ∈ {−d, . . . , 0},
ui(k′) = ri(k′) − ri(k′ − 1) for k′ ∈ {1 − d, . . . , 0}, (10)

where d is the communication delay defined in Assumption 1,
γ, K, are the controller parameters whose tuning is discussed
later in Section 5, ri(k) is the reference measured by agent i at
step k, and xi(k) is the state of agent i to track the average of the
references at step k. Note that the state xi(k) is computed using
the current measurement of the reference signal ri(k) (it appears
inside the expression of ui(k) in (10)).

We note the following characteristics of the proposed method
(10). First, note that both the proposed algorithm (10) and the
classical dynamic average method (7) only require exchanging
a piece of data of constant size with neighbors (recall from (1)
that ai j = 1 only for neighbor agents). Thus, both (10) and
(7) have good scalability properties on the number of agents
n in what refers to the communication costs, i.e., the costs do
not increase for networks with more sensing agents. Note also
that the operations carried out by each agent are light (multi-
plications and sums of elements of constant size), so that the
computational complexity is low and scalable as well. Now,
consider the memory costs. For conventional consensus meth-
ods (7), memory costs are constant. The proposed method (10)
requires maintaining an up to date sum of the last d control
inputs ui(k − d) + · · · + ui(k − 1), and also recalling the value
of the reference variable ri(k − 1 − d) measured d + 1 steps
earlier, where d is the communication delay. Thus, the mem-
ory cost now is larger than for (7). However, the memory cost
does not depend on the number of robots n so that the proposed
method is scalable. In addition, all the required data is local to
agent i and thus, the communication cost is not increased. Fi-
nally, from the discussion in Section 2.1, note that (10) allows
the delay d to affect the relative data from neighboring robots(
xi(k − 1 − d) − x j(k − 1 − d)

)
.

Algorithm 1 shows the pseudocode version of (10), i.e., the
instructions that are run by every agent i at every step k.

Due to the decentralized nature of the control scheme, the
algorithm in (10) cannot achieve an exact delay compensation
in general. However, as we will prove in the remaining of
the manuscript, the proposed method (10) effectively counter-
attacks the negative effects of the time delays. Under an ap-
propriate design of the controller parameters, the method can
resist arbitrarily large delays without jeopardizing the closed–
loop stability.

Remark 1. The control design parameters associated to the
dynamic consensus with delay compensation (10), are K and

5



Algorithm 1 Dynamic Average Consensus with Delay Compen-
sation - Agent i, step k

1: Measure ri(k)
2: if step k ≤ 0 then:
3: ui(k) := ri(k) − ri(k − 1)
4: xi(k) := ri(k)
5: else
6: Receive relative states from neighbors j
7: (delayed data): (xi(k − 1 − d) − x j(k − 1 − d))
8: Compute ui(k), xi(k) with (10)
9: Discard outdated data (ri(k − 1 − d) and ui(k − d))

10: end if
11: Send state xi(k) to neighbors
12: Store local data ri(k), ui(k)

γ. Later, in Section 5, in Theorem 1 (Stability and Convergence
Speed) for general strongly connected graphs, and in Corollary
1 (Undirected graphs), we give specific values for these param-
eters. These expressions, depend exclusively on the network
topology, in particular on the eigenvalues of the graph Lapla-
cian. These eigenvalues can be obtained by the robots in several
ways, for instance, they can be computed in a distributed fash-
ion. Examples include [46] for undirected graphs, and [47] for
digraphs.

Remark 2. From the previous discussion, we summarize the
features of the proposed dynamic consensus with delay compen-
sation method (10). It has constant communication and compu-
tational cost per iteration and agent, and memory costs propor-
tional to the to the delay d. The method is scalable: the com-
munication, computational and memory costs do not depend on
the number of agents n. The control design parameters K and
γ have closed form expressions (Theorem 1 and Corollary 1)
oriented towards improving the convergence speed.

4. Augmented Closed–Loop Representation

In the previous section, we presented the proposed algo-
rithm for dynamic average consensus with delay compensation
(10). In this section, we present an equivalent augmented state-
space representation of the overall multi–agent system (later in
Proposition 1) that will be useful to address the convergence
analysis carried out later in Section 5.

4.1. Compact Form of the Proposed Algorithm

First, define the compact vectors x(k) ∈ Rn, r(k) ∈ Rn,
whose entries contain the state variables and reference signals
for all the robots in the network at step k,

x(k) = [x1(k), . . . , xn(k)]T ,

r(k) = [r1(k), . . . , rn(k)]T . (11)

First, we present the following two lemmas required to ob-
tain the state–space model given later in Proposition 1:

Lemma 1 (Compact form). Let vectors x(k) and r(k) be as in
(11) and let L be the Laplacian matrix associated to the graph
(1). The dynamic average consensus algorithm with delay com-
pensation in (10) in compact form is given by

x(k) = (1 − γK) x(k − 1) + K (γI − L) x(k − 1 − d)
+ r(k) − (1 − γK) r(k − 1) − γKr(k − 1 − d), for k ≥ 1,

x(k′) = r(k′), for k′ ∈ {−d, . . . , 0}, (12)

where d is the communication delay and scalars γ, K are the
control parameters defined in (10) that can be tuned to achieve
a desired behavior.

Proof. First, note from (10) that

ui(k) = xi(k) − xi(k − 1), (13)

so that the term with the sum of control inputs along steps gives

d∑
f=1

ui(k − f ) = ui(k − 1) + ui(k − 2) + · · · + ui(k − d)

= (xi(k − 1) − xi(k − 2)) + (xi(k − 2) − xi(k − 3))
+ · · · + (xi(k − d) − xi(k − d − 1))
= xi(k − 1) − xi(k − 1 − d). (14)

Thus, ui(k) in (10) gives

ui(k) = −K
n∑

j=1

ai j

(
xi(k − 1 − d) − x j(k − 1 − d)

)
− γKxi(k − 1) + γKxi(k − 1 − d))
+ ri(k) − (1 − γK) ri(k − 1) − γKri(k − 1 − d). (15)

Using (15) in (10), xi(k) evolves according to

xi(k) = −K
n∑

j=1

ai j

(
xi(k − 1 − d) − x j(k − 1 − d)

)
+ xi(k − 1) − γKxi(k − 1) + γKxi(k − 1 − d))
+ ri(k) − (1 − γK) ri(k − 1) − γKri(k − 1 − d), for k ≥ 1,

xi(k′) = ri(k′) for k′ ∈ {−d, . . . , 0}. (16)

Rearranging terms in (16) and expressing them using the vec-
tors in (11), we get (12), concluding the proof.

Let e(k) ∈ Rn, ē(k) ∈ Rn be the vectors containing respec-
tively the error vector, and the average error vector, at every
step k,

e(k) = x(k) −
1wT
L1

1T wL1

r(k),

ē(k) =
1wT
L1

1T wL1

e(k) =
1wT
L1

1T wL1

x(k) −
1wT
L1

1T wL1

r(k), (17)

where wL1 is the left eigenvector of the Laplacian matrix (1)
associated to the eigenvalue 0 defined in (2), and where x(k)
and r(k) are defined in (11). Note from the equivalence wT

L1
1 =

1T wL1 that
1(wT

L1
1)wT

L1
(1T wL1 )(1T wL1 ) =

1wT
L1

1T wL1
.

6



Lemma 2 (Error and Average Error Vectors). The dynamic
average consensus with delay compensation method in (10) and
(12), expressed in terms of the error vector e(k) in (17), under
Assumption 2 leads to the following closed–loop expressions:

e(k) = (1 − γK) e(k − 1) + K (γI − L) e(k − 1 − d) + Πr(k)
− (1 − γK)Πr(k − 1) − γKΠr(k − 1 − d), for k ≥ 1,

e(k′) = Πr(k′), for k′ ∈ {−d, . . . , 0}, (18)

where L is the Laplacian matrix in (1), and matrix Π ∈ Rn×n is
given by

Π = I −
1wT
L1

1T wL1

. (19)

Moreover, the average error vector ē(k) in (17), whose dynam-
ics error e(k) is given in (18), is identically zero, i.e.,

ē(k) = 0n,∀k ≥ 0. (20)

Proof. Expression (18) is obtained by applying the change of
variables (17) in (12), and using L1 = 0.

In order to prove (20), we express (18) in terms of the aver-
age error vector ē(k) given in (17), obtaining

ē(k) = (1 − γK)ē(k − 1) +

Kγ
1wT
L1

1T wL1

 e(k − 1 − d)

−

K
1wT
L1

1T wL1

L

 e(k − 1 − d) +
1wT
L1

1T wL1

Π (r(k) − r(k − 1))

+ γK
1wT
L1

1T wL1

Π (r(k − 1) − r(k − 1 − d)) , for k ≥ 1 and

ē(k′) =
1wT
L1

1T wL1

Πr(k′), for k′ ∈ {−d, 0}. (21)

Note that

1wT
L1

1T wL1

L = 0, and
1wT
L1

1T wL1

Π = 0. (22)

Using (22) in (21), several terms cancel out, and we obtain

ē(k) = (1 − γK)ē(k − 1) + Kγē(k − 1 − d), for k ≥ 1 and
ē(k′) = 0n, for all k′ ∈ {−d, 0}. (23)

Finally, the condition (20) can be straightforwardly deduced
from (23), concluding the proof.

Observe from (23) that ē(k) starts being equal to zero, and
continues being zero for all iterations k.

4.2. Augmented Closed–Loop Model

This section finds the augmented system model formed by
gathering current and past states, errors, and references, with
horizon equivalent to delay d.

Definition 1 (Augmented vectors). We define the following aug-
mented vectors x+(k) ∈ Rn(d+1), e+(k) ∈ Rn(d+1), r+(k) ∈ Rn(d+2),

x+(k) =
[
x(k)T , x(k − 1)T , . . . , x(k − d)T

]T
,

e+(k) =
[
e(k)T , e(k − 1)T , . . . , e(k − d)T

]T
,

r+(k) =
[
r(k)T , r(k − 1)T , . . . , r(k − 1 − d)T

]T
, (24)

with x(k), e(k) and r(k) as in equations (11), (17). Note that the
augmented reference vector r+(k) ∈ Rn(d+2) contains an addi-
tional element due to the inclusion of the reference ri(k − 1− d)
at step k − 1 − d.

The following result obtains an equivalent closed-loop rep-
resentation of the multi–agent system with the proposed dy-
namic average consensus with delay compensation (10).

Proposition 1 (Augmented form). Let x+(k), e+(k) and r+(k)
be the vectors defined in (24) and let L be the Laplacian matrix
associated to the graph (1). Let scalars γ, K be the controller
parameters defined in (10). The dynamic average consensus
algorithm with delay compensation in (10), (12), (18), in aug-
mented form, for all k ≥ 1, is given by

x+(k) = Mx+(k − 1) + Br+(k),
e+(k) = Me+(k − 1) + Ber+(k), where (25)

M =

 (1 − γK)In 0n×(d−1)n γKIn − KL
In 0n×(d−1)n 0n×n

0(d−1)n×n I(d−1)n 0(d−1)n×n

 ,
B =

[
In −(1 − γK)In 0n×n(d−1) −γKIn

0n(d+1)×n(d+2)

]
,

Be =

[
Π −(1 − γK)Π 0n×n(d−1) −γKΠ

0n(d+1)×n(d+2)

]
,

where n is the number of robots, d is the communication delay,
and Π is given in (19).

Proof. It follows from the Lemmas 1 and 2, and the definition
of the augmented vectors (24).

5. Convergence Analysis Based on Eigenvalue Approach

5.1. Eigenvalues Characterization

Proposition 2 (Eigenvalues and eigenvectors). Let λLi and wLi

be the eigenvalues and left eigenvectors of the Laplacian matrix
in (1), and let Assumption 2 hold. The eigenvalues λi ∈ C and
the left eigenvectors wi ∈ C(d+1)n (the entries may be complex
values) of the augmented system matrix M in (25) satisfy the
following expressions, for i ∈ {1, . . . , n}:

λd+1
1 − λd

1(1 − γK) − γK = 0,

λd+1
2 − λd

2(1 − γK) + (KλL2 − γK) = 0,
...

λd+1
n − λd

n(1 − γK) + (KλLn − γK) = 0, (26)

7



where λd
i represents the value of λi raised to the d-th power.

Each line in (26) gives d + 1 solutions for λi, and

wi =



wi,1
wi,2
wi,3
...

wi,d+1


=



wLi

−(1 − γK − λi)wLi

−λi(1 − γK − λi)wLi

...
−(λi)(d−1)(1 − γK − λi)wLi


, (27)

where every wi,l, for l = 1, . . . , d + 1 contains n elements.

Proof. Recall from Proposition 1 that the system matrix M is
given by (25). Now we consider the left eigenvectors wi ∈

C(d+1)n and eigenvalues λi of M, for i = 1, . . . , n.
Considering that[

wT
i,1, . . . ,w

T
i,d+1

]
M = λi

[
wT

i,1, . . . ,w
T
i,d+1

]
, (28)

we get the following system

(1 − γK)wi,1 + wi,2 = λiwi,1

wi,3 = λiwi,2

...

wi,d+1 = λiwi,d

wT
i,1(γK − KL) = λwT

i,d+1. (29)

We let wi,1 be a left eigenvector of the Laplacian matrix, wi,1 =

wLi (27), so that

wT
i,1KL = λLi KwT

i,1, (30)

and thus the last expression in (29) gives

(γK − KλLi )wi,1 = λiwi,d+1 == λ
2
i wi,d = · · · = λ

d
i wi,2, (31)

where

wi,2 = (λi − (1 − γK))wi,1, so that

λd
i wi,2 = λ

d+1
i wi,1 − λ

d
i (1 − γK)wi,1, (32)

giving finally

(γK − KλLi )wi,1 = λ
d+1
i wi,1 − λ

d
i (1 − γK)wi,1. (33)

Thus, we conclude that the eigenvalues λ of the augmented sys-
tem matrix M are the ones satisfying (26). The expression in
(27) is obtained by making wi,1 = wLi and applying (29).

Observe from Prop. 2 that the system matrix M in (25) asso-
ciated to the augmented system has one eigenvalue equal to 1,
and d additional eigenvalues associated to the Laplacian eigen-
value λL1 = 0, i.e., the d + 1 solutions of:

λd+1
1 − λd

1(1 − γK) − γK = 0, (34)

where d is the time delay expressed in time steps. From Prop. 2
and its proof, the associated eigenvectors arec1

wT
L1

1T wL1

, c2
wT
L1

1T wL1

, . . . , cd+1
wT
L1

1T wL1

T

, (35)

where c1, . . . , cd+1 are real or complex constants, and the left
Laplacian eigenvector wT

L1
satisfies (22).

We let λM,1 ∈ C(d+1)×(d+1) be a diagonal matrix with these
eigenvalues (the solutions of (34)), and we let W l

M,1 ∈ C
(d+1)n×(d+1)

contain the associated (d + 1) left eigenvectors of M, as in (35).
Equivalently, we let Wr

M,1 be the associated right eigenvectors;
although their expressions could be obtained in a similar way
to W l

M,1 in Prop. 2, this is omitted since it is not needed in the
following result. Observe that matrix

M1 = M −Wr
M,1λM,1(W l

M,1)T , (36)

has the same eigenvalues as matrix M, except for the eigenval-
ues in λM,1 that appeared in M but now have value equal to 0 in
the new matrix M1.

Proposition 3. The dynamic average consensus with delay com-
pensation (10) under Assumptions 1, 2, converges to a neigh-
borhood of the weighted average (2) of the reference signals,
i.e.,

lim sup
k→∞

∣∣∣∣∣∣∣∣xi(k) −
1

1T wL1

n∑
j=1

[wL1 ] jr j(k)

∣∣∣∣∣∣∣∣ ≤ B, (37)

for all i ∈ {1, . . . , n}, withB < ∞, if the spectral radius of matrix
M1 is less than 1, where M1 is given by (36), and it has the
same eigenvalues as the augmented system matrix M in (25),
but considering exclusively the ones with i ∈ {2, . . . , n}, i.e.,
excluding the d + 1 eigenvalues with i = 1 (recall that matrices
M and M1 have (d+1)n eigenvalues), and if Assumption 3 holds
with α+∞ finite and defined as follows, ∀k:

∥Π(r(k) − r(k − 1)) + γKΠ(r(k − 1) − r(k − 1 − d))∥∞ ≤ α+∞.
(38)

Moreover, the convergence speed of (10) can be determined by
the spectral radius of M1 (namely ρ(M1)).

Proof. Recall from (25) that, for all k ≥ 1,

e+(k) = Me+(k − 1) + Ber+(k). (39)

Now we rewrite (39) in terms of matrix M1 in (36):

e+(k) = M1e+(k − 1) + Ber+(k)

+Wr
M,1λM,1(W l

M,1)T e+(k − 1), for k ≥ 1. (40)

Taking into account the definition of ē(k) in (17) and (20) in
Lemma 2, together with the structure of the eigenvectors given
in (35), and considering that the augmented error vector e+(k)
is composed of error vectors at different time steps (see Propo-
sition 1), the last term in (40) vanishes. Thus, we get that the
errors evolve according to

e+(k) = M1e+(k − 1) + Ber+(k), (41)

so that the stability and convergence speed depends on the ad-
ditional eigenvalues of matrix M, i.e., the ones associated to the
Laplacian eigenvalues λL2 , . . . , λLn .

8



Now, we decompose matrix M1 into its eigenvalues λM1 and
right Wr

M1
and left W l

M1
eigenvectors,

M1 = Wr
M1
λM1 (W l

M1
)T , (42)

with Wr
M1

(W l
M1

)T = I, and we let ρ(M1) be the largest modulus
eigenvalue of M1. Then, from (41) and (42),

e+(k) = Wr
M1

(λM1 )k(W l
M1

)T e+(0)

+

k−1∑
f=0

Wr
M1

(λM1 ) f (W l
M1

)T Ber+(k − f ). (43)

Note that, since λM1 is a diagonal matrix, then

∥(λM1 )k∥∞ ≤ ρ(M1)k. (44)

From (43), (46) and (44), we have

∥e+(k)∥∞ ≤ µ1µ2ρ(M1)k∥e+(0)∥∞

+

k−1∑
f=0

µ1µ2(ρ(M1)) f ∥Ber+(k − f )∥∞. (45)

where µ1 and µ2 are defined as:

µ1 = ∥W l
M1
∥∞, µ2 = ∥Wr

M1
∥∞. (46)

Note from Proposition 1 that

Ber+(k) = Π(r(k) − r(k − 1)) + γKΠ(r(k − 1) − r(k − 1 − d)).
(47)

Consider Assumption 3 with the bound α+∞ defined in (38).
Then,

∥Ber+(k′)∥∞ ≤ α+∞,∀k′, (48)

with α+∞ finite. Thus, (45) gives

∥e+(k)∥∞ ≤ µ1µ2ρ(M1)k∥e+(0)∥∞ + µ1µ2

 k−1∑
f=0

ρ(M1) f

α+∞
≤ µ1µ2ρ(M1)k∥e+(0)∥∞ + µ1µ2

1 − ρ(M1)k

(1 − ρ(M1))
α+∞. (49)

Now, note that∣∣∣∣∣∣∣∣xi(k) −
1

1T wL1

n∑
j=1

[wL1 ] jr j(k)

∣∣∣∣∣∣∣∣ ≤ ∥e+(k)∥∞,

lim sup
k→∞

∣∣∣∣∣∣∣∣xi(k) −
1

1T wL1

n∑
j=1

[wL1 ] jr j(k)

∣∣∣∣∣∣∣∣ ≤ lim sup
k→∞

∥e+(k)∥∞.

(50)

If ρ(M1) ∈ [0, 1), then 1 − ρ(M1) ∈ (0, 1] and

lim
k→∞
ρ(M1)k = 0, (51)

so that, from (49),

lim sup
k→∞

∥e+(k)∥∞ ≤ µ1µ2
1

(1 − ρ(M1))
α+∞. (52)

Recall from Assumption 3 that α+∞ is finite. From (50) and (52),
we get (37), with

B = µ1µ2
1

(1 − ρ(M1))
α+∞, (53)

which concludes the proof.

From the previous analysis, it can be seen that the proposed
method (10) can be studied by using the classical tools for ana-
lyzing consensus methods, using the augmented system in (25)
instead of, e.g., the matrix form of (4) that includes the Perron
matrix In − βδL. Thus, following similar ideas as in [1, 2], we
built an expression in Proposition 3 for the error bound sim-
ilar to (6). Note that the bound given by (37), (53) is quite
conservative. In conclusion, we have shown that the ultimate
tracking error is bounded under similar conditions as the ones
considered in classical dynamic consensus methods [1, 2], i.e.,
as long as the variation of the reference signals (relative to their
centroid) along the iterations is bounded, i.e., when there exists
a finite α+∞ as in Assumption 3.

5.2. Root Locus Analysis

Note from Propositions 2 and 3 that the stability and con-
vergence speed of the proposed method (10) can be studied by
considering the eigenvalues of the augmented system matrix
M (25), excluding the d + 1 eigenvalues of M associated to
the Laplacian eigenvalue λL1 = 0. Thus, next we discuss the
values of these remaining eigenvalues, associated to the aug-
mented closed–loop system (25), depending on the parameter
selection. In the following discussion, we analyze the effects of
the parameters for the real eigenvalues. The case in which the
eigenvalues are complex conjugates would be done in a similar
way, and it is omitted for clarity. We let λLi be the i − th eigen-
value of the Laplacian, and λi be the eigenvalue of the resulting
system matrix M of the delayed system, for i = 2, . . . , n. From
Prop. 2:

λd+1
1 − aλd

1 + Ω1 = 0

λd+1
2 − aλd

2 + Ω2 = 0
...

λd+1
n − aλd

n + Ωn = 0 (54)

where each line gives d + 1 values for λi, and a,Ωi, i = 1, ..., n
are defined as:

a = 1 − γK, Ωi = (KλLi − γK). (55)

Observe in (54) that, in all cases, coefficient a = (1− γK) is the
same, whereas coefficientΩi changes depending on the particu-
lar Laplacian eigenvalue. Now, we discuss how the eigenvalues

9



change depending on parameters a and Ωi, whose values de-
pend on the tuning parameters γ,K, and on the eigenvalues of
the Laplacian matrix λLi .

For our analysis, we resort to root locus analysis, as in [48].
Whereas in [48] it was used to analyze general linear systems
with delays and uni–dimensional variables, here apply the root
locus analysis to study the multi-dimensional dynamic consen-
sus method presented previously. In terms of root locus analy-
sis, each row in (54) is equivalent to having a system in open
loop, Fopen−loop(λ), with

Fopen−loop(λ) =
1

λd+1 − aλd =
1

λd(λ − a)
, (56)

i.e., in open loop there are d poles in λ = 0, and one pole in
λ = a. Then, root locus can be used to study the placement of
the closed–loop poles (the solutions of (54)) depending on the
specific values of the Ωi, for i = 2, . . . , n. Thus, the shape of
the root locus is the same for all the equations in (54), whereas
every particular value associated to Ωi will fix the particular
solutions.

The breakaway point for the root locus is computed by mak-
ing

∂Fopen−loop(λ)
∂λ

= 0, (57)

and it gives

λbreak =
da

d + 1
, Ωbreak =

dd

(d + 1)(d+1) (|a|)d+1, (58)

where d is the time delay expressed in time steps, and dd repre-
sents the value of the scalar d raised to the d-th power (equiva-
lently, (d+1)(d+1) represents d+1 raised to the (d+1)-th power).
Depending on the particular sign of parameters a and Ωi, there
may not be any breakaway point. We discuss these situations in
Figure 2.

a < 0 a > 0, Ωi > 0 a > 0, Ωi < 0

Figure 2: General shape of the root locus

Note that if a < 0 (Figure 2, left), then there is an open loop
pole with negative sign. This case is symmetric to a > 0, with
the disadvantage that these poles with negative sign are known
to produce ringing behavior [49]. Thus, we keep parameter a
positive, as in Figure 2 (center and rightmost-side pictures),

a ≥ 0, γK ≤ 1. (59)

Note that in Fig. 2 Right, parameter Ωi < 0 is negative. Thus,
as the modulus of Ωi increases, the pole that starts at a becomes
larger (slower, or even unstable). On the other hand, in Fig. 2
Center (a > 0, Ωi > 0), this pole becomes smaller (faster, more

stable) asΩi increases. For values between a and the breakaway
point λbreak (58), it takes real values, leading to a overdamped
behaviour. Moreover, the fastest response is obtained when the
pole is equal to λbreak.

From the above discussion, it can be seen that the speed of
convergence (the largest modulus closed–loop eigenvalue) can-
not be faster than λbreak =

da
d+1 . Thus, having smaller a will give

rise to faster convergence speed. This is specially important for
large delays, since d

d+1 becomes closer to one as d increases.
Thus, in this paper, we propose the following tuning method.
Parameter tuning: The following criteria is proposed for choos-
ing the controller parameter γ of the dynamic average consen-
sus with delay compensation (10):

γ =
1
K
, i.e., γK = 1 so that a = 0. (60)

As shown later in Theorem 1, the above equivalence ensures
the convergence of the overall system, irrespective of the size
of delay d, i.e., the system matrix is stable for all values of the
delay d, which is an important characteristic. Note also that
the parameter selection for K⋆ and γ⋆ in Theorem 1 does not
depend on the delay d.

Definition 2 (Laplacian eigenvalues). Under Assumption 2, the
Laplacian has a single trivial eigenvalue λL1 = 0. For undi-
rected graphs, all the remaining eigenvalues are real and strictly
positive [25], and we let λL2 and λLn be the minimum and max-
imum eigenvalues, excluding the trivial eigenvalue λL1 = 0.
For graphs that are strongly connected [25, Lemma 2], the
eigenvalues may be real or complex conjugates; all non trivial
eigenvalues satisfy cos(λLi ) ∈ (0, 1], for i ∈ {2, . . . , n}. We let
λLcos be the minimum cosine, and λLmin and λLmax be the small-
est and largest modulus Laplacian eigenvalues, excluding the
trivial eigenvalue:

λLcos = min
i∈{2,...,n}

cos(λLi ), (61)

λLmin = min
i∈{2,...,n}

|λLi |, λLmax = max
i∈{2,...,n}

|λLi |.

Theorem 1 (Stability and Convergence Speed). Consider robots
run the dynamic consensus with delay compensation (10), where
there is a delay of d steps associated to the communication, and
Assumption 1 holds. Let the directed communication graph be
as in Assumption 2, with associated Laplacian matrix L. Let
parameters γ = γ⋆, K = K⋆ satisfy

K⋆ =
2λLcos

(λLmin + λLmax )
, γ⋆ =

1
K⋆
, (62)

where λLcos , λLmin , λLmax are given by (61) in Def. 2. Then, the
system matrix M1 in (36) is convergent for all values of the
delay d, with convergence speed:

ρ(M1) ≤
(
1 −

4(λLcos )
2λLminλLmax

λLmin + λLmax

) 1
2(d+1)

< 1. (63)

Moreover, let α+∞ be a finite value that bounds the variation of
the reference signals as in Assumption 3 in (38) with (19):

α+∞ = max
k


∥∥∥∥∥∥∥
I − 1wT

L1

1T wL1

 (r(k) − r(k − 1 − d))

∥∥∥∥∥∥∥
∞

 . (64)

10



Then, the states of the agents converge asymptotically to a neigh-
borhood of the weighted average (2) of the reference signals,
i.e., (37).

Proof. We use Lemmas 1 and 2 and Propositions 1, 2 and 3
to conclude that the convergence speed of the system matrix
M1 in (36) associated with algorithm (10) can be studied by
considering the eigenvalues in (26), (54), for i = 2, . . . , n. Note
from (62) that using γ equal to γ⋆ = 1

K⋆
makes a = 0, with a

given in (55). Then, equation (54) gives

λd+1
i = (1 − KλLi ), (65)

for all i ∈ {2, . . . , n}.
Now, we study the modulus of these eigenvalues. For real

Laplacian eigenvalues λLi , we obtain

|λi|
2(d+1) = (1 − KλLi )

2. (66)

For complex conjugate Laplacian eigenvalues, λ+
Li

, λ−
Li

, (54)
gives pairs of complex conjugate eigenvalues with

(λ+i )(d+1) = (1 − KλL+i ), (λ−i )(d+1) = (1 − KλL−i ), (67)

so that the modulus of these eigenvalues satisfy

|λi|
2(d+1) = (λ+i )(d+1)(λ−i )(d+1) = 1 − 2K|λLi | cos(λLi ) + K2|λLi |

2,
(68)

which, for real positive eigenvalues λLi , equals (66), since the
cosine of real eigenvalues equals one cos(λLi ) = 1.

Observe from (62) that K > 0. For a fixed K > 0, we
discuss next the expressions for the modulus |λi|

2(d+1) in (68),
depending on the values of cos(λLi ) and |λLi |.

If we increase cos(λLi ) from 0 to 1, then (68) is strictly de-
creasing, taking always positive values and reaching its maxi-
mum for cos(λLi ) = λLcos . Instead, if we modify the modulus
|λLi |, from λLmin to λLmax , then (68) first decreases, reaching a
minimum (greater than 0), and it increases again. Thus, (68)
reaches its maximum value at either |λLi | = λLmin or |λLi | =

λLmax . Thus, (68) will be strictly smaller than one for all the
eigenvalues of the system matrix M1, and thus matrix M1 will
be convergent, if (68) it is strictly smaller than one for the max-
imum situations detected earlier, with K as in (62).

The value of |λi|
2(d+1) in (68) for cos(λLi ) = λLcos and |λLi | =

λLmin , with K = K⋆ =
2λLcos

(λLmin+λLmax ) as in (62), gives

|λi|
2(d+1) = 1 −

4(λLcos )
2λLmin

(λLmin + λLmax )

+
4(λLcos )

2

(λLmin + λLmax )2 (λLmin )2 = 1 −
4(λLcos )

2λLminλLmax

(λLmin + λLmax )2 < 1,

(69)

which is strictly smaller than 1, since the second term is strictly
negative. Now we consider the value of |λi|

2(d+1) in (68) for
cos(λLi ) = λLcos and |λLi | = λLmax , with K = K⋆ =

2λLcos
(λLmin+λLmax )

as in (62), which gives

|λi|
2(d+1) = 1 −

4(λLcos )
2λLmax

(λLmin + λLmax )

+
4(λLcos )

2

(λLmin + λLmax )2 (λLmax )2 = 1 −
4(λLcos )

2λLminλLmax

(λLmin + λLmax )2 < 1,

(70)

as before. Thus, the system matrix M1 is convergent, with spec-
tral radius satisfying (63). Finally, the asymptotic convergence
of the states of the agents to a neighborhood of the weighted
average (2) of the reference signals, is obtained by using Propo-
sition 3 with ρ(M1) < 1, and by repeating the steps followed in
the proof of Prop. 3 using γK = 1 as in (62) and α+∞ as in (64).
In this case, we obtain the same expression for B as in (53), but
where α+∞ here is as in (64). This concludes the proof.

Corollary 1 (Undirected graphs). For undirected graphs, the
expressions for the parameters γ⋆, K⋆ and for the convergence
speed ρ(M1) are simpler, and they are given by:

K⋆ =
2

(λL2 + λLn )
, γ⋆ =

1
K⋆
, ρ(M1) =

(
λLn − λL2

λLn + λL2

)( 1
d+1 )
,

(71)

where λL2 and λLn are the second smallest and the largest eigen-
values of the Laplacian matrix (Def. 2).

Note that (71) requires knowing λL2 and λLn , that can be
computed by the robots in a distributed way [46]. Equiva-
lently, for directed graphs, the expressions in (62) depend on
the Laplacian eigenvalues of directed graphs that can also be
obtained in a distributed way [47].

Remark 3 (Ultimate tracking bound). Recall again that the
bound given by (37) is quite conservative. However, the interest
of the previous discussion is that we can conclude that the ulti-
mate tracking error is bounded under similar conditions as the
ones considered in classical dynamic consensus methods [1, 2],
i.e., as long as the variation of the reference signals (relative to
their centroid) along the iterations is bounded.

6. Simulations

(a) Directed graph (b) Undirected graph

Figure 3: Communication graphs used in the simulations. (a) Directed graph
strongly connected. (b) Undirected connected graph.

11



0 500 1000 1500
−5

0

5

10

15

20

25

30

step k

 

 

ref
i
(k)

avg (undirected)

w avg (digraph)

0 500 1000 1500
−5

0

5

10

15

20

25

30

step k

 

 

ref
i
(k)

avg (undirected)

w avg (digraph)

0 500 1000 1500
0

50

100

150

200

250

300

350

400

step k

 

 

ref
i
(k)

avg (undirected)

w avg (digraph)

(a) References (S 1) (b) References (S 2) (c) References (S 3)

Figure 4: References measured by the robots (gray solid), along the iterations k (abscissa–axis). The weighted average rwavg(k) and average ravg(k) of the reference
signals given by (2) and (3) are shown respectively in red solid and in black solid. These average values are associated to, respectively, the directed strongly
connected and the undirected connected graphs in Fig. 3.

0 500 1000 1500
0

5

10

15

20

25

step k

 

 

w avg (digraph)

x
i
(k), d=1

x
i
(k), d=10

x
i
(k), d=50

0 500 1000 1500
0

5

10

15

20

25

step k

 

 

w avg (digraph)

x
i
(k), d=1

x
i
(k), d=10

x
i
(k), d=50

0 500 1000 1500
0

50

100

150

200

250

300

350

400

step k

 

 

w avg (digraph)

x
i
(k), d=1

x
i
(k), d=10

x
i
(k), d=50

(a) directed (S 1) (b) directed (S 2) (c) directed (S 3)

0 500 1000 1500
0

5

10

15

20

25

step k

 

 

avg (undirected)

x
i
(k), d=1

x
i
(k), d=10

x
i
(k), d=50

0 500 1000 1500
0

5

10

15

20

25

step k

 

 

avg (undirected)

x
i
(k), d=1

x
i
(k), d=10

x
i
(k), d=50

0 500 1000 1500
0

50

100

150

200

250

300

350

400

step k

 

 

avg (undirected)

x
i
(k), d=1

x
i
(k), d=10

x
i
(k), d=50

(d) undirected (S 1) (e) undirected (S 2) (f) undirected (S 3)

Figure 5: Proposed dynamic consensus with delay compensation for the cases (S 1, S 2, S 3) in Fig. 4, under the directed ((a),(b),(c)) and the undirected communica-
tion graphs ((d), (e), (f)) in Fig. 3. The states of each agent i = 1, . . . , n along the iterations k (abscissa–axis), for different delay values d ∈ {1, 10, 50} are shown in
different colors. The weighted average rwavg(k) (directed graph: (a), (b), (c)) and the average ravg(k) (undirected graph: (d), (e), (f)), of the time–varying reference
signals in (2) and (3) are displayed in black dashed.

0 500 1000 1500
0

5

10

15

20

25

step k

 

 

avg (undirected)

x
i
(k), d=1, K

*
=0.27

x
i
(k), d=10, K

*
=0.27

x
i
(k), d=50, K

*
=0.27

0 500 1000 1500
0

5

10

15

20

25

step k

 

 

avg (undirected)

x
i
(k), d=1, K

*
=0.27

x
i
(k), d=10, K

*
=0.27

x
i
(k), d=50, K

*
=0.27

0 500 1000 1500
0

50

100

150

200

250

300

350

400

step k

 

 

avg (undirected)

x
i
(k), d=1, K

*
=0.27

x
i
(k), d=10, K

*
=0.27

x
i
(k), d=50, K

*
=0.27

(a) S 1 (b) S 2 (c) S 3

Figure 6: Alternative execution. Instead of using the proposed dynamic consensus with delay compensation, here agents use a dynamic consensus method without
delay compensation [1, 2, 30], (7). Here, as discussed in Section 2.2, agents use a larger period for trying to get rid of the delay d, for the cases (S 1, S 2, S 3) in Fig.
4 under the undirected communication graph (Fig. 3(b)). The states of each agent i = 1, . . . , n, along the iterations k (abscissa–axis), are here depicted for different
delay values d ∈ {1, 10, 50} in different colors.

We consider an example with n = 20 agents tracking the average of 20 reference signals. Figure 3 shows the communi-

12



0 500 1000 1500
0

5

10

15

20

25

step k

 

 

avg (undirected)

x
i
(k), d=1, δβ=0.0142

x
i
(k), d=10, δβ=0.00213

x
i
(k), d=50, δβ=0.000442

0 500 1000 1500
0

5

10

15

20

25

step k

 

 

avg (undirected)

x
i
(k), d=1, δβ=0.0711

x
i
(k), d=10, δβ=0.0106

x
i
(k), d=50, δβ=0.00221

0 500 1000 1500
0

5

10

15

20

25

step k

 

 

avg (undirected)

x
i
(k), d=1, δβ=0.128

x
i
(k), d=10, δβ=0.0191

x
i
(k), d=50, δβ=0.00398

(a) βδ = 0.1(2/λLn ) sin(π/(2(2d + 1))) (b) βδ = 0.5(2/λLn ) sin(π/(2(2d + 1))) (c) βδ = 0.9(2/λLn ) sin(π/(2(2d + 1)))

Figure 7: Alternative execution. Instead of using the proposed dynamic consensus with delay compensation, here agents use a dynamic consensus method
without delay compensation [1, 2, 30], (7), for the simulated case (S 1) in Fig. 4(a) under the undirected communication graph (Fig. 3(b)). The states of each agent
i = 1, . . . , n (solid, different colors), along the iterations k (abscissa–axis), are here depicted, together with the average of the time–varying reference signals (black
dashed).

cation graphs used: a directed strongly connected graph (Fig.
3(a)) and an undirected connected graph (Fig. 3(b)). We test
the performance of the proposed algorithm, under different time
delays (d = {1, 10, 50}), for tracking different references sig-
nals, according to three sets of simulations (Figure 4). Next,
we show the reference signal ri(k) measured by every robot
i = 1, . . . , n at every step k ≥ 0:

• (S 1) Time–varying reference signals with the same time-
variation pattern.

ri(k) = i + 4 sin(0.01k), ∀i = 1, . . . , n, ∀k ≥ 0. (72)

• (S 2) Time–varying reference signals with different time-
variation pattern.

ri(k) = i + 4 sin (0.01k) + 0.5 sin
(

k
√

i
+
√

i
)
,

∀i = 1, . . . , n, ∀k ≥ 0. (73)

• (S 3) Time–constant reference signals with different val-
ues.

ri(k) = i2, ∀i = 1, . . . , n, ∀k ≥ 0. (74)

In the first set of simulations (S 1), the references measured
by every robot i = 1, . . . , n are time–varying. Note however the
definition of α+∞ in (64). Here, for all agent i and every step k,
the term

ri(k) −
1

1T wL1

n∑
j=1

[wL1 ] jr j(k) = i −
1

1T wL1

n∑
j=1

[wL1 ] j j,

so thatri(k) −
1

1T wL1

n∑
j=1

[wL1 ] jr j(k)


−

ri(k − 1 − d) −
1

1T wL1

n∑
j=1

[wL1 ] jr j(k − 1 − d)

 = 0,

and α+∞ = 0. Thus, if the system matrix is stable, then robots
will asymptotically track rwavg(k) in (2) with zero error (the ul-
timate tracking bound B in (53) is zero). In the second set of
simulations (S 2), the references are again time–varying. The
value of α+∞ in (64) is different from zero, i.e., α+∞ > 0, so that
if the system matrix is stable, then robots will asymptotically
track rwavg(k) in (2) with an ultimate tracking error valueB (53).
In the third set of simulations (S 3), the references remain con-
stant along time, similarly as for a static consensus situation.
The ultimate tracking error B is zero, since α+∞ = 0 in (64).

Figure 4 (a) to (c) shows the references signals (solid gray)
for each case, the weighted average rwavg(k) (solid red) and av-
erage ravg(k) (solid black) of the reference signals given by (2)
and (3), for the cases in which the communication graph is,
respectively, directed strongly connected (Fig. 3(a)) and undi-
rected connected (Fig. 3(b)). Recall that, for undirected graphs,
1T is a left eigenvector of the Laplacian L associated with the
eigenvalue 0, i.e., 1TL = 0T . Thus, (2) is the exact average (3).

Figure 5 (a), (b), (c) shows the results of the proposed dy-
namic consensus with delay compensation (10) for the directed
communication graph in Fig. 3(a), for the three scenarios in
Fig. 4, and for different delays d ∈ {1, 10, 50}. For the di-
graph (Fig. 3(a)), the associated Laplacian has eigenvalues
with the following characteristics (Def. 2): λLcos = 0.7497,
λLmin = 0.3869 (associated with λLi = 0.29 − 0.256i), and
λLmax = 3.4197 (associated with λLi = 3.4197). We set the
parameters of the proposed dynamic average consensus with
delay compensation algorithm (10), (25) as follows: K and γ
according to Theorem 1, i.e., K = K⋆ =

2λLcos
(λLmin+λLmax ) = 0.3939,

γ⋆ = 1/K⋆ = 2.5387. We show the evolution of the states of
each robot i ∈ {1, . . . , n} for the different delays d in different
colors. As stated by Theorem 1, in all the scenarios and for all
the delay values d, the states converge to a neighborhood of the
weighted average rwavg(k) in (2) (black dashed). In addition,
in scenarios S 1 and S 3, since α+∞ equals zero as previously
commented, the states of the robots asymptotically converge
exactly to rwavg(k). Observe also that, as stated by Theorem 1,
the convergence is faster for lower delay values d. As the de-
lay increases, the convergence speed is reduced, but the system
remains stable. For each delay, we obtain the following theoret-

13



ical upper bound for the convergence speed (Theorem 1, (63)),

ρ(M1) ≤
(
1 −

4(λLcos )
2λLminλLmax

(λLmin + λLmax )2

) 1
2(d+1)

= 0.7947
1

2(d+1) ,

and compare it against the true ρ(M1) obtained for the aug-
mented system matrix M1:

ρ(M1) = 0.9442 ≤ 0.7947
1

2(d+1) |d=1 = 0.9442,

ρ(M1) = 0.9896 ≤ 0.7947
1

2(d+1) |d=10 = 0.9896,

ρ(M1) = 0.9977 ≤ 0.7947
1

2(d+1) |d=50 = 0.9977.

In this particular case, both numerical and theoretical values are
exactly equal, since the λLcos value was obtained for the same
eigenvalue that produced λLmin .

Figure 5 (d), (e), (f) shows the results of the proposed dy-
namic consensus with delay compensation (10) for the undi-
rected communication graph in Fig. 3(b), for the three sce-
narios in Fig. 4, and for different delays d ∈ {1, 10, 50}. For
the undirected graph (Fig. 3(b)), the associated Laplacian has
the eigenvalues λL2 = 0.3820 and λLn = 7.0322. We set the
parameters of the proposed dynamic average consensus with
delay compensation algorithm (10), (25) as follows: K and γ
according to Corollary 1, i.e., K = K⋆ = 2

(λL2+λLn ) = 0.2698,
γ⋆ = 1/K⋆ = 3.7064. We show the evolution of the states of
each robot i ∈ {1, . . . , n} for the different delays d in different
colors. As stated by Theorem 1, in all the scenarios and for all
the delay values d, the states converge to a neighborhood of the
average ravg(k) in (3) (black dashed). In addition, in scenarios
S 1 and S 3, since α+∞ equals zero as previously commented, the
states of the robots asymptotically converge exactly to ravg(k) in
(3). Observe also that, as stated by Corollary 1, the convergence
is faster for lower delay values d. As the delay increases, the
convergence speed is reduced, but the system remains stable.
For each delay, we obtain the following theoretical convergence
speed (Corollary 1, (71)),

ρ(M1) =
(
λLn − λL2

λLn + λL2

)( 1
d+1 )
= 0.897( 1

d+1 ),

and compare it against the true ρ(M1) obtained for the aug-
mented system matrix M1:

ρ(M1) = 0.9471 = 0.897( 1
d+1 )|d=1 = 0.9471,

ρ(M1) = 0.9902 = 0.897( 1
d+1 )|d=10 = 0.9902,

ρ(M1) = 0.997 = 0.897( 1
d+1 )|d=50 = 0.9979,

obtaining in this case the same values for the numerical and
theoretical values, as expected from Corollary 1.

All the simulations in this section were run in a computer
with Matlab 2012b, Windows 10, processor 11th Gen Intel(R)
Core(TM) i5-1135G7 2.40GHz, 8,00 GB RAM. Next, we in-
clude as an example the execution times needed to run the sets
of simulations displayed in Figure 5 (a), which are similar to
the ones obtained in the other cases (b) to (f). These times are
associated with n = 20 agents, running 1500 iterations of the

method. For d = 1, d = 10 and d = 50, the execution times
were respectively 1.394 seconds, 2.419 seconds and 6.814 sec-
onds. This confirms that, as commented at the end of Section
3, the proposed algorithm is light in terms of the required com-
munication, computation, and memory resources.

6.1. Effects of parameter tuning on stability

Now, we make a study of the different speeds of conver-
gence that can be achieved with our proposed dynamic average
consensus with delay compensation method (10), (25), if γ and
K are selected with values different from the ones in Theorem
1 and Corollary 1 ( γ⋆ and K⋆). We consider the communica-
tion graph in Figure 3(b). In Table 1 and Figure 8, we show the
leading eigenvalues of the augmented system matrix M, exclud-
ing the ones associated to the Laplacian eigenvalue λL1 = 0, for
delays d ∈ {1, 10, 50}. Recall that the proposed method is
oriented towards compensating the negative effects of the de-
lays, so that, under mild conditions on the connectivity of the
graphs and on the reference signals, we ensure convergence and
improve the convergence speed. Both ideas (stability and con-
vergence speed) are properly represented by ρ(M1) in equations
(63) and (71). As discussed in Proposition 3 and its proof, the
stability and convergence speed of the algorithm is related to the
speed with which ρ(M1)k decays to zero. Thus, if ρ(M1) < 1,
then ρ(M1)k asymptotically becomes zero (otherwise, it grows
up as k increases). The convergence is faster when ρ(M1) is
closer to zero. For this reason, we select this value as the per-
formance evaluation indicator in this section.

Observe that the resulting system matrix is unstable in sev-
eral cases (values larger than one in Table 1, values above the
blue line in Figure 8 ). The behavior of the eigenvalues is
counter-intuitive, unless they are analyzed in terms, e.g., of the
root locus, as done in Section 5. As stated in Theorem 1 and
Corollary 1, the selection γ⋆ and K⋆ (in bold) always give rise
to a stable system matrix. The improvement of the convergence
speed, was justified for undirected graphs and large values of d
in Section 5. We observe this in Table 1 (center, d = 10) and
(bottom, d = 50), where the achieved speed using γ⋆ and K⋆
(in bold) is faster than for the other selections. Observe also
in Figure 8 that the smallest eigenvalue modulus and thus, the
fastest convergence speed, is obtained when using γ⋆ and K⋆
from Corollary 1 (red circle). In this example, faster conver-
gence speed can also be appreciated for small delays (Table 1
(top, d = 1)).

6.2. Effects of sparseness on parameter tunning

We have performed several simulations to demonstrate the
performance of the proposed method for different graph topolo-
gies, including undirected graphs that may be sparsely con-
nected.

As shown in Figure 9 (a), (b), (c), we have done simulations
with a Minimum distance Spanning Tree (Graph 1, in red). We
have also used a Graph 2, in green, that includes all the links
in Graph 1, and also some additional links. We have used a
third graph (Graph 3) even more connected (in blue). Note that
al these graphs are connected, and that all of them are sparse.

14



0.25 K* 0.5 K* 0.75 K* 1 K* 1.25 K*

0.95

1

1.05

1.1

1.15

1.2

 

 

stability limit

γ* and K*

γ = 0.25 1/K

γ = 0.5 1/K

γ = 0.75 1/K

γ = 1/K

γ = 1.25 1/K

0.25 K* 0.5 K* 0.75 K* 1 K* 1.25 K*

0.95

1

1.05

1.1

1.15

1.2

0.25 K* 0.5 K* 0.75 K* 1 K* 1.25 K*

0.95

1

1.05

1.1

1.15

1.2

(a) d = 1 (b) d = 10 (c) d = 50

Figure 8: Convergence speed when the delay equals d = 1 (a), d = 10 (b) and d = 50 (c) for the communication graph in Figure 3(b), which is undirected. The
figures contain the graphical representation of the values shown in Table 1. They represent the modulus of the leading eigenvalue. Values closer to 0 provide faster
convergence speed. Values larger than one (stability limit, in blue), are associated to unstable systems. The abscissa–axis represents different values of K, which are
equal to K = f actorK K⋆, where f actorK ∈ {0.25, 0.5, 0.75, 1, 1.25}. Every plot represents a value of γ equal to γ = f actorγ

K , where f actorγ ∈ {0.25, 0.5, 0.75, 1, 1.25},
as shown in the legend. We show in red the convergence speed obtained with the proposed parameter tuning (K⋆, γ⋆ in Corollary 1), which is the smallest one, and
thus, produces the fastest speed. Note also that it is always stable (smaller than one, blue line).

d = 1
HHHHγ

K 0.25 K⋆ 0.5 K⋆ 0.75 K⋆ 1 K⋆ 1.25 K⋆

0.25 1
K 0.9752 0.9522 1.1114 1.2833 1.4348

0.5 1
K 0.9766 0.9573 1.0236 1.1819 1.3214

0.75 1
K 0.9779 0.9615 0.9489 1.0710 1.1974

1 1
K 0.9790 0.9648 0.9547 0.9471 1.250

1.25 1
K 0.9801 0.9677 0.9593 1.250 1.5625

d = 10
HH

HHγ
K 0.25 K⋆ 0.5 K⋆ 0.75 K⋆ 1 K⋆ 1.25 K⋆

0.25 1
K 1.0583 1.1007 1.1236 1.1384 1.1489

0.5 1
K 1.0319 1.0629 1.0771 1.0852 1.0902

0.75 1
K 1.0036 1.0250 1.0329 1.0368 1.0389

1 1
K 0.9923 0.9910 0.9944 0.9902 1.0447

1.25 1
K 0.9935 0.9926 0.9990 1.0447 1.1042

d = 50
H
HHHγ

K 0.25 K⋆ 0.5 K⋆ 0.75 K⋆ 1 K⋆ 1.25 K⋆

0.25 1
K 1.0279 1.0325 1.0344 1.0353 1.0360

0.5 1
K 1.0169 1.0189 1.0196 1.0199 1.0201

0.75 1
K 1.0071 1.0080 1.0082 1.0083 1.0084

1 1
K 0.9986 0.9997 0.9999 0.9979 1.0100

1.25 1
K 0.9991 0.9999 0.9999 1.0100 1.0246

Table 1: Convergence speed when the delay equals d = 1 (top), d = 10 (center)
and d = 50 (bottom), for different values of K and γ. Each column represents a
value of K equal to K = f actorK K⋆, where f actorK ∈ {0.25, 0.5, 0.75, 1, 1.25}
is the number shown in the top row of the table. Each row represents a value of
γ equal to γ = f actorγ

K , where f actorγ ∈ {0.25, 0.5, 0.75, 1, 1.25} is the number
shown in the left column of the table.

Consider instead the graph with all-to-all connections that ap-
pears in Figure 9 (d), in gray.

We have executed simulations using d = 3 delay steps, to
track the average of the reference signals in scenario S 1 (72),
using the three sparse graph topologies in Figure 9 (a), (b), (c).
Since the three sparse graphs are undirected, we use Corollary
1 to tune the parameters K = K⋆ and K = γ⋆.

Using Graph 1 (Figure 9(a)), which is a MST tree graph,

we get the following eigenvalues associated to the graph Lapla-
cian: λL2 = 0.0679 and λLn = 4.5235. The parameter tuning
values obtained, following Corollary 1, are K = K⋆ = 0.4356,
γ = γ⋆ = 0.1435. We obtain the following convergence speed:
ρ(M1) = 0.9925. Figure 9(e), in red, shows the evolution of the
states of the nodes along the steps. Note that the states converge
asymptotically to the average of the reference values (in black
dashed), regardless the presence of the delay d = 3.

We use now Graph 2 (Figure 9(b)), that is more connected
than Graph 1. The Laplacian eigenvalues and the result of the
parameter tuning using Corollary 1 are: λL2 = 0.1819 and
λLn = 5.2177, K = K⋆ = 0.3704, γ = γ⋆ = 0.1687. For this
topology, we obtain the following convergence speed ρ(M1) =
0.9827. Observe that this speed is faster than for Graph 1, since
ρ(M1) has a value closer to zero. Since this graph has more
links, in the absence of delays, the convergence of the consen-
sus algorithms would be faster. As it can be observed, since
the parameter tuning proposed in this paper is oriented towards
improving the convergence speed counterattacking the negative
effects of the delays d, it also gives rise to faster convergence in
the presence of delays when the graphs have a higher connec-
tivity. Figure 9(e), in green, shows the evolution of the states
of the nodes along the steps. The states (in green) converge
asymptotically to the average of the reference values (in black
dashed), with a faster speed than for Graph 1 (in red).

Finally, we use Graph 3 (Figure 9(c)), that is the sparse
graph with the highest connectivity in this set of simulations.
The Laplacian eigenvalues and the result of the parameter tun-
ing using Corollary 1 are: λL2 = 0.3495 and λLn = 6.6138,
K = K⋆ = 0.2872, γ = γ⋆ = 0.2176. For this topology, we ob-
tain the fastest convergence speed rate ρ(M1) = 0.9739. We can
see that the states (Figure 9(e), in blue) of the nodes converge
asymptotically to the average of the reference values (in black
dashed), and faster than for Graphs 1 (in red) and 2 (in green).

6.3. Comparison with other alternatives

We compare the performance of the proposed algorithm
against other alternatives. Figure 6 shows an alternative ex-
ecution, commented in Section 2.2 in which agents do not run

15



1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

0 500 1000 1500
0

2

4

6

8

10

12

14

16

step k

 

 

avg (undirected)

x
i
(k), d=3, graph 1

x
i
(k), d=3, graph 2

x
i
(k), d=3, graph 3

(a) Graph 1 (b) Graph 2 (c) Graph 3 (d) All-to-all (e) Results

Figure 9: Sparse communication graphs. (a) Graph 1 is a Minimum-distance Spanning Tree (MST). (b) Graph 2 contains all the edges in Graph 1, and some
additional links. (c) Graph 3 is more connected than Graph 2. (d) Graph with all-to-all connections. (e) Results of the proposed consensus with delay compensation
for the sparse graphs in Fig. 9 (a),(b),(c). The states of each agent i = 1, . . . , n along the iterations k (abscissa–axis), for the different graphs, are shown in different
colors. The average ravg(k) , of the time–varying reference signals in (3) are displayed in black dashed.

the proposed dynamic consensus with delay compensation. In-
stead, they run a dynamic consensus method without delay com-
pensation [1, 2, 30], (7). Besides, as explained in Section 2.2,
instead of using a measurement and update period T associated
with each iteration k, a larger period dT is used. This means
that the references are sampled less often. On the other hand,
nodes wait until they receive (or process) the relative states from
neighbors, so that now the update refers to consecutive steps
k′, k′ − 1 (i.e., they get rid of the delay d). In this example, we
consider the cases (S 1, S 2, S 3) in Fig. 4 under the undirected
communication graph (Fig. 3(b)). For the case S 3 (static con-
sensus) there is no difference. However, observe for cases S 1
and S 2 (dynamic consensus) the negative effects on the robot
states due to the decreased sampling frequency. The robot states
remain unchanged for longer time (here, dT , compared to Fig.
5((d), (e), (f)), in which the states change at every step; here, we
take T = 1). As a result, the average is tracked with less pre-
cision. This problem does not appear in static consensus, but it
is important in dynamic consensus scenarios. Note also that the
benefits of the proposed method (Fig. 5 (d), (e), (f)) relative to
Fig. 6 become more important for larger delay values d.

In Figure 7, we compare the performance of the proposed
algorithm against dynamic consensus methods that do not in-
clude delay compensation [1, 2, 30], (7), for the simulated case
(S 1) in Fig. 4(a) under the undirected communication graph
(Fig. 3(b)). In all cases, we use values of βδ that satisfy (9).
Note that these values depend on the delay d, and that it is
unclear from (9) which value will produce faster convergence.
The proposed method (Fig. 5(d)) has a single value K⋆ for all
the delay values d and converges faster.

Finally, Figure 10 shows another case in which agents do
not use the proposed dynamic consensus with delay compensa-
tion method. Instead, they consider (7) but without any delays
in the state of agent i, i.e., making ui(k) = ri(k) − ri(k − 1) −
βδ

∑n
j=1 ai j(xi(k − 1) − x j(k − 1 − d)). Static consensus meth-

ods in which the self information from agents i is not delayed,
have been reported to be convergent regardless of the delay d.
We show an immediate application to the dynamic consensus
protocol in (7) of this idea. In all the simulations, we used
βδ = 0.5/Nmax that satisfies (5) (for the undirected graph in Fig.
3(b), the maximum node degree is Nmax = 4). Whereas for all
the tested delays d ∈ {1, 10, 50} the resulting system converged,
it can also be seen that the states of the agents no longer track
the average of the reference signals. Thus, this option should

be discarded, unless a careful tuning was carried out to ensure
the states track indeed the average.

0 500 1000 1500
0

5

10

15

20

25

step k

 

 

avg (undirected)

x
i
(k), d=1, δβ=0.125

x
i
(k), d=10, δβ=0.125

x
i
(k), d=50, δβ=0.125

Figure 10: Dynamic consensus without delay compensation for the simulated
case (S 1) in Fig. 4(a) under the undirected communication graph (Fig. 3(b)).
In these simulations, the delay d only affects the neighbors’ states, but not the
local state of agents. The states of each agent i = 1, . . . , n (solid, different
colors), along the iterations k (abscissa–axis), are here depicted, together with
the average of the time–varying reference signals (black dashed).

7. Conclusions

We have presented a dynamic consensus method with delay
compensation. The design of the consensus parameters have
also been discussed to ensure the convergence of the closed-
loop systems for arbitrarily large fixed delays d. This is a strong
benefit, since dynamic consensus methods without delay com-
pensation diverge for large delays. Remarkably, the tuning cri-
teria of the consensus parameters does not depend on the de-
lay d. We have also given a characterization of the conver-
gence speed of our method. Simulation results have been pro-
vided to show the closed–loop performance for systems with
n = 20 agents and large delays. The proposed algorithm de-
pends strongly on the fact that all delays have the same time-
constant value d and are known in advance (see Assumption
1) by the agents. We have discussed examples of application
in which the proposed method is of interest. In order to cope
with a wider variety of scenarios, future extensions of this work
might consider time–varying delays [5]. In addition, the graphs
considered here include a wide variety of topologies (see As-
sumption 2), such as strongly connected directed graphs. In
fact, we have performed several simulations to demonstrate the

16



performance of the proposed method for different graph topolo-
gies, including undirected graphs that may be sparsely con-
nected. An interesting future extension would consider instead
time-varying topologies, which are quite challenging in the con-
text of dynamic average consensus methods.

Acknowledgements

Supported via group Gobierno de Aragón T45 23R and
projects PID2021-124137OB-I00, PID2020-116585GB-I00 and
TED2021-130224B-I00 funded by
MCIN/AEI/10.13039/501100011033, by ERDF A way of mak-
ing Europe and by the European Union NextGenerationEU/PRTR.

References

[1] S. S. Kia, B. Van Scoy, J. Cortes, R. A. Freeman, K. M. Lynch, S. Mar-
tinez, Tutorial on dynamic average consensus: The problem, its applica-
tions, and the algorithms, IEEE Control Systems Magazine 39 (3) (2019)
40–72.

[2] S. S. Kia, J. Cortés, S. Martinez, Dynamic average consensus under lim-
ited control authority and privacy requirements, International Journal of
Robust and Nonlinear Control 25 (13) (2015) 1941–1966.

[3] R. A. Freeman, P. Yang, K. M. Lynch, Stability and convergence proper-
ties of dynamic average consensus estimators, in: IEEE Conf. on Decision
and Control, 2006, pp. 338–343.

[4] L. Xiao, S. Boyd, S. Lall, A space-time diffusion scheme for peer-to-
peer least-squares estimation, in: Int. Conf. on Information Processing in
Sensor Networks, 2006, pp. 168–176.

[5] A. González, R. Aragues, G. López-Nicolás, C. Sagüés, Predictor-
feedback synthesis in coordinate-free formation control under time-
varying delays, Automatica 113 (2020) 108811.

[6] M. Todescato, N. Bof, G. Cavraro, R. Carli, L. Schenato, Partition-based
multi-agent optimization in the presence of lossy and asynchronous com-
munication, Automatica 111 (2020) 108648.

[7] L. Ji, L. Yu, C. Zhang, X. Guo, H. Li, Initialization-free distributed
prescribed-time consensus based algorithm for economic dispatch prob-
lem over directed network, Neurocomputing 533 (2023) 1–9.

[8] S. Chen, D. W. Ho, Information-based distributed extended Kalman filter
with dynamic quantization via communication channels, Neurocomput-
ing 469 (2022) 251–260.

[9] W. Wang, Mean-square exponential input-to-state stability of stochastic
fuzzy delayed cohen-grossberg neural networks, Journal of Experimental
& Theoretical Artificial Intelligence 0 (0) (2023) 1–14. doi:10.1080/

0952813X.2023.2165725.
[10] C. Huang, B. Liu, C. Qian, J. Cao, Stability on positive pseudo al-

most periodic solutions of hpdcnns incorporating d operator, Mathemat-
ics and Computers in Simulation 190 (2021) 1150–1163. doi:https:

//doi.org/10.1016/j.matcom.2021.06.027.
URL https://www.sciencedirect.com/science/article/pii/

S0378475421002500

[11] B. Liu, Global exponential stability for bam neural networks with time-
varying delays in the leakage terms, Nonlinear Analysis: Real World Ap-
plications 14 (1) (2013) 559–566. doi:https://doi.org/10.1016/

j.nonrwa.2012.07.016.
URL https://www.sciencedirect.com/science/article/pii/

S1468121812001411

[12] Q. Zhu, J. Cao, Mean-square exponential input-to-state stability of
stochastic delayed neural networks, Neurocomputing 131 (2014) 157–
163. doi:https://doi.org/10.1016/j.neucom.2013.10.029.
URL https://www.sciencedirect.com/science/article/pii/

S0925231213010886

[13] C. Zhou, H. Tao, Y. Chen, V. Stojanovic, W. Paszke, Robust point-
to-point iterative learning control for constrained systems: A
minimum energy approach, International Journal of Robust and
Nonlinear Control 32 (18) (2022) 10139–10161. arXiv:https:

//onlinelibrary.wiley.com/doi/pdf/10.1002/rnc.6354,

doi:https://doi.org/10.1002/rnc.6354.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/

rnc.6354

[14] Z. Zhuang, H. Tao, Y. Chen, V. Stojanovic, W. Paszke, An optimal iter-
ative learning control approach for linear systems with nonuniform trial
lengths under input constraints, IEEE Transactions on Systems, Man, and
Cybernetics: Systems 53 (6) (2023) 3461–3473.

[15] T. Wei, X. Li, V. Stojanovic, Input-to-state stability of impulsive reaction–
diffusion neural networks with infinite distributed delays, Nonlinear Dy-
namics 103 (2021) 1733–1755.

[16] Y. Ghaedsharaf, M. Siami, C. Somarakis, N. Motee, Centrality in time-
delay consensus networks with structured uncertainties, Automatica 125
(2021) 109378.

[17] F. Chen, C. Chen, G. Guo, C. Hua, G. Chen, Delay and packet-drop toler-
ant multistage distributed average tracking in mean square, IEEE Trans-
actions on Cybernetics 52 (9) (2021) 9535–9545.

[18] S. Jafarizadeh, D. Veitch, Robust weighted-average continuous-time con-
sensus with communication time delay, IEEE Transactions on Cybernet-
ics (2021).

[19] S. De, S. R. Sahoo, P. Wahi, Communication-delay-dependent rendezvous
with possible negative controller gain in cyclic pursuit, IEEE Transactions
on Control of Network Systems 7 (3) (2019) 1069–1079.

[20] G. Wen, Y. Yu, Z. Peng, H. Wang, Dynamical group consensus of het-
erogenous multi-agent systems with input time delays, Neurocomputing
175 (2016) 278–286.

[21] Z. Wang, J. Xu, X. Song, H. Zhang, Consensus problem in multi-agent
systems under delayed information, Neurocomputing 316 (2018) 277–
283.

[22] J. Xu, H. Zhang, L. Xie, Input delay margin for consensusability of multi-
agent systems, Automatica 49 (6) (2013) 1816–1820.

[23] Y. G. Sun, L. Wang, G. Xie, Average consensus in networks of dynamic
agents with switching topologies and multiple time-varying delays, Sys-
tems & Control Letters 57 (2) (2008) 175–183.

[24] Y.-P. Tian, C.-L. Liu, Consensus of multi-agent systems with diverse in-
put and communication delays, IEEE Transactions on Automatic Control
53 (9) (2008) 2122–2128.

[25] R. Olfati-Saber, J. A. Fax, R. M. Murray, Consensus and cooperation in
networked multi-agent systems, Proceedings of the IEEE 95 (1) (2007)
215–233.

[26] Z. Wang, J. Xu, X. Song, H. Zhang, Consensus conditions for multi-agent
systems under delayed information, IEEE Transactions on Circuits and
Systems II: Express Briefs 65 (11) (2018) 1773–1777.

[27] W. Qiao, R. Sipahi, Delay-dependent coupling for a multi-agent lti con-
sensus system with inter-agent delays, Physica D: Nonlinear Phenomena
267 (2014) 112–122.

[28] P.-A. Bliman, G. Ferrari-Trecate, Average consensus problems in net-
works of agents with delayed communications, Automatica 44 (8) (2008)
1985–1995.

[29] Y. Ghaedsharaf, N. Motee, Performance improvement in time-delay lin-
ear consensus networks, in: American Control Conference, 2017, pp.
2345–2350.

[30] H. Moradian, S. S. Kia, On robustness analysis of a dynamic average con-
sensus algorithm to communication delay, IEEE Transactions on Control
of Network Systems 6 (2) (2019) 633–641.

[31] A. Nedić, A. Ozdaglar, Convergence rate for consensus with delays, Jour-
nal of Global Optimization 47 (3) (2010) 437–456.

[32] L. Moreau, Stability of continuous-time distributed consensus algorithms,
in: IEEE Conf. on Decision and Control, 2004, pp. 3998–4003.

[33] A. Seuret, D. V. Dimarogonas, K. H. Johansson, Consensus under com-
munication delays, in: IEEE Conf. on Decision and Control, 2008, pp.
4922–4927.

[34] T. Charalambous, C. N. Hadjicostis, Average consensus in the presence
of dynamically changing directed topologies and time delays, in: IEEE
Conf. on Decision and Control, 2014, pp. 709–714.

[35] C. Somarakis, J. S. Baras, Delay-independent stability of consensus net-
works with application to flocking, IFAC-PapersOnLine 48 (12) (2015)
159–164.

[36] A. González, M. Aranda, G. López-Nicolás, C. Sagüés, Time delay
compensation based on smith predictor in multiagent formation control,
IFAC-PapersOnLine 50 (1) (2017) 11645–11651.

[37] A. Gonzalez, P. Garcia, P. Albertos, P. Castillo, R. Lozano, Robustness of

17

https://doi.org/10.1080/0952813X.2023.2165725
https://doi.org/10.1080/0952813X.2023.2165725
https://www.sciencedirect.com/science/article/pii/S0378475421002500
https://www.sciencedirect.com/science/article/pii/S0378475421002500
https://doi.org/https://doi.org/10.1016/j.matcom.2021.06.027
https://doi.org/https://doi.org/10.1016/j.matcom.2021.06.027
https://www.sciencedirect.com/science/article/pii/S0378475421002500
https://www.sciencedirect.com/science/article/pii/S0378475421002500
https://www.sciencedirect.com/science/article/pii/S1468121812001411
https://www.sciencedirect.com/science/article/pii/S1468121812001411
https://doi.org/https://doi.org/10.1016/j.nonrwa.2012.07.016
https://doi.org/https://doi.org/10.1016/j.nonrwa.2012.07.016
https://www.sciencedirect.com/science/article/pii/S1468121812001411
https://www.sciencedirect.com/science/article/pii/S1468121812001411
https://www.sciencedirect.com/science/article/pii/S0925231213010886
https://www.sciencedirect.com/science/article/pii/S0925231213010886
https://doi.org/https://doi.org/10.1016/j.neucom.2013.10.029
https://www.sciencedirect.com/science/article/pii/S0925231213010886
https://www.sciencedirect.com/science/article/pii/S0925231213010886
https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.6354
https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.6354
https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.6354
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/rnc.6354
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/rnc.6354
https://doi.org/https://doi.org/10.1002/rnc.6354
https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.6354
https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.6354


a discrete-time predictor-based controller for time-varying measurement
delay, Control Engineering Practice 20 (2) (2012) 102–110.

[38] A. González, A. Sala, R. Sanchis, Lk stability analysis of predictor-based
controllers for discrete-time systems with time-varying actuator delay,
Systems & Control Letters 62 (9) (2013) 764–769.

[39] Z. Artstein, Linear systems with delayed controls: A reduction, IEEE
Transactions on Automatic Control 27 (4) (1982) 869–879.

[40] Z. Wang, H. Zhang, X. Song, H. Zhang, Consensus problems for discrete-
time agents with communication delay, International Journal of Control,
Automation and Systems 15 (4) (2017) 1515–1523.

[41] B. Zhou, Z. Lin, Consensus of high-order multi-agent systems with large
input and communication delays, Automatica 50 (2) (2014) 452–464.

[42] A. Ponomarev, Z. Chen, H.-T. Zhang, Discrete-time predictor feedback
for consensus of multiagent systems with delays, IEEE Transactions on
Automatic Control 63 (2) (2018) 498–504.

[43] S. Chen, Z. Zou, Z. Zhang, L. Zhao, Fixed-time scaled consensus of
multi-agent systems with input delay, Journal of the Franklin Institute
(2022).

[44] J. B. Ernst, Energy-efficient next-generation wireless communications,
Handbook of Green Information and Communication Systems (2012)
371.

[45] T. H. Illangasekare, Q. Han, A. P. Jayasumana, Environmental under-
ground sensing and monitoring, in: Underground Sensing, Elsevier, 2018,
pp. 203–246.

[46] T. M. D. Tran, A. Y. Kibangou, Distributed estimation of Laplacian eigen-
values via constrained consensus optimization problems, Systems & Con-
trol Letters 80 (2015) 56–62.

[47] A. Gusrialdi, Z. Qu, Distributed estimation of all the eigenvalues and
eigenvectors of matrices associated with strongly connected digraphs,
IEEE control systems letters 1 (2) (2017) 328–333.

[48] Z. Lin, On asymptotic stabilizability of discrete-time linear systems with
delayed input, in: IEEE Int. Conf. on Control and Automation, 2007, pp.
432–437.

[49] D. Seborg, T. Edgar, D. Mellichamp, Process Dynamics and Control, 1st
ED. Chapter 26: Design of Digital Controllers. Wiley, 1989.

18


	Introduction
	Preliminaries and Problem Description
	Consensus in Presence of Delays
	Examples of Application

	Dynamic Average Consensus with Delay Compensation
	Augmented Closed–Loop Representation 
	Compact Form of the Proposed Algorithm
	Augmented Closed–Loop Model

	Convergence Analysis Based on Eigenvalue Approach
	Eigenvalues Characterization
	Root Locus Analysis

	Simulations
	Effects of parameter tuning on stability
	Effects of sparseness on parameter tunning
	Comparison with other alternatives

	Conclusions



